Computer scientists say seagull algorithms could hide the secret to greener cloud computing

Read the full story from Fast Company.

We have engineered materials that are sturdier than ever, modeled after the oozing networks of the humble slime mold. And locomotive robots, propelled by the squishing trudge motions of an earthworm. And symmetric algorithms, which mimic the way shapes like snowflakes and sunflowers bloom spontaneously.

Now, a team of researchers from the United Kingdom, China, and Austria are looking to use the habits of seagulls to build better cloud computing systems.In a paper published in Internet of Things and Cyber-Physical Systems, a journal from KeAi, which was founded in a partnership between Elsevier and China Science Publishing & Media, the researchers argue that using a “seagull optimization algorithm”—a so-called meta-heuristic algorithm that mimics the hunting and migration behavior of seagulls—can make cloud computing more energy efficient, cutting its power consumption by 5.5% and lightening its network traffic by 70%.

Hummingbird flight could provide insights for biomimicry in aerial vehicles

Read the full story from Penn State.

Using a novel modeling method, a team of researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.

What mirrored ants, vivid blue butterflies and Monstera house plants can teach us about designing buildings

Coleen Rivas/Unsplash

by Aysu Kuru, University of Sydney

Almost all buildings today are built using similar conventional technologies and manufacturing and construction processes. These processes use a lot of energy and produce huge carbon emissions.

This is hardly sustainable. Perhaps the only way to truly construct sustainable buildings is by connecting them with nature, not isolating them from it. This is where the field of bioarchitecture emerges. It draws on principles from nature to help solve technological questions and address global challenges.

Take desert organisms, for example. How do they survive and thrive under extreme conditions?

One such desert species is the Saharan silver ant, named for its shiny mirror-like body. Its reflective body reflects and dissipates heat. It’s an adaptation we can apply in buildings as reflective walls, or to pavements that don’t heat up.

several ants surround a beetle on the desert sand
Saharan desert ants have highly developed adaptations to stay cool in the desert heat. Bjørn Christian Tørrissen/Wikimedia Commons, CC BY-SA

There are so many aspects of nature we can drawn on. Picture cities with shopping centres based on water lilies, stadiums resembling seashells, and lightweight bridges inspired by cells.

Water lilies can teach us how to design large buildings efficiently with smooth pedestrian circulation. Seashells can inspire the walls of large-span buildings without the need for columns. Cells can show us how to develop lightweight suspending structures.

Bioarchitecture works with nature, not against it

Bioarchitecture can reinvent the natural environment in the form of our built environment, to provide the ultimate and somehow obvious solutions for the threats Earth is facing.

Most industry-led and research-based approaches focus on the “technology to save us” from climate change. In contrast, bioarchitecture offers a more sustainable approach that aims to develop a positive relationship between buildings and nature.

Living organisms constantly communicate with the natural world. They move around their environment, employ chemical processes and undergo complex reactions, patterning their habitat. This means living systems constantly model and organise the environment around them. They are able to adapt and, in doing so, they change their environment too.

Can buildings do the same in cities? If buildings could grow, self-repair and adapt to climate, they might ultimately become truly sustainable.

Early examples of bioarchitecture can be found in traditional and early modern buildings. Their architects observed nature to copy its principles and design more habitable, locally made and environmentally friendly buildings. For example, Gaudi’s Sagrada Familia in Barcelona, Spain, is inspired by natural shapes that give the church its organic form.

Highly decorative interior of church – Gaudi's Sagrada Família
Gaudi`s Sagrada Familia in Barcelona is an early modern example of bioarchitecture. Sung Jin Cho/Unsplash

More recent works showcase bioarchitecture that learnt from nature coupled with technology and innovation. Examples include using bio-based materials such as wood, hemp and bamboo, applying biophilia through using greenery on external walls and plants indoors to boost our connection with nature, and restoring the environment by making buildings part of it.

Considering the climate emergency, we should strengthen buildings’ coherence with nature. Bioarchitecture can do this.

So what can a butterfly teach us?

The blue Menelaus butterfly offers another striking example of design solutions from nature. Despite its radiant blue colour, it is not actually blue and does not have any pigments. Producing and maintaining pigments is expensive in nature, as it requires a lot of energy.

The Menelaus butterfly has an ingenious way to achieve its unique colour without pigments. Its brilliant blue shine comes from scattering light, similar to soap bubbles glimmering in rainbow colours under the sun, despite being completely transparent. The light is scattered by micro-grooves on the butterfly’s wings – so small that they can only be seen with an ultra-high-resolution microscope.

Brilliant blue butterfly on dark green leaf
The Menelaus blue butterfly. Damon on Road/Unsplash

This is nature’s way to achieve high performance with cheap forms instead of costly materials. Learning from the Menelaus butterfly, we can have windows with climate-adaptable properties – changing their colour and scattering light according to the position of the sun. Butterfly wings have already inspired the development of new materials, and the next step is to use these on buildings.

In this way, we can design biobuildings that reflect excessive radiation and reduce cooling needs and glare. And the beautiful part is that this may all be done without obstructing views and without the need for shading devices or tinted windows.

And what does a pot plant have to do with buildings?

Image of four large leaves of indoor plant
The leaves of the Monstera plant. Chris Lee/Unsplash

Then there is Monstera, a sought-after indoor plant that climbs up the walls. It’s also called the “Swiss cheese plant” for the holes on its leaves. Have you ever thought about how it thrives and grows like no other plant indoors?

Monstera simply needs to sustain fewer cells to maintain extra large leaves because of their holes. This enables it to capture more of the sunlight it needs to grow and spread out over a bigger area.

Now imagine if we designed hollow building structures such as columns and beams. This could help minimise the need for materials and cut carbon emissions by reducing the embodied energy that goes into making these materials.

Nature offers a vast design catalogue

We can look at nature as a catalogue of designs and solutions to be reimagined as bioarchitecture. So, we could have shiny silver pavements like the silver ant, metallic-coloured but transparent windows like the Menelaus butterfly, and buildings that use the minimum of materials like Monstera’s leaves.

Nature is wealthy, nature is generous. Through bioarchitecture, buildings can dive into that wealth and become a part of the generosity. Truly sustainable biobuildings can be constructed that work with nature and reverse the harm our conventional building technologies have done to the planet.

Aysu Kuru, Lecturer in Architecture and Construction, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Could a trash-eating compost bin solve our organic waste problem?

Read the full story from Fast Company.

Bob Hendrikx, an architect and biodesigner based in the Netherlands, has developed a concept for a “living bin” inspired by sea anemones. Though they look like colorful flowers, some species of anemones are omnivorous marine animals that feed on plants and other small animals like fish, crab, and plankton. According to Hendrikx, our trash cans could work in a similar way.

Inspiration from nature: New ways to make flying more efficient and renewable

Read the full story at Aerotime Hub.

Right from the very first days of flying, when Otto Lilienthal studied the flight of birds to design his first gliders, the world of aviation has taken inspiration from nature.  

Now with an increasing focus on ways to make flying more efficient to reduce emissions, manufacturers and designers are copying tricks from the natural world. 

Shark-skin technology lets planes fly fast with less fuel

Read the full story from Bloomberg.

Earlier this year, a Lufthansa Group Boeing 747-400 flying on the carrier’s international route of networks in Asia sported an unusual covering on its underside. Attached to portions of the craft’s lower fuselage and belly fairing was a thin film-like coating imprinted with a ribbed texture of small protrusions, each about 50 micrometers high. The riblets on the surface of the film, dubbed AeroSHARK, are designed to reduce friction between the aircraft’s surface and the air around it in a bid to cut fuel consumption and lower carbon emissions.

The film, inspired by shark skin and its well-known ability to reduce drag in water, is a prime example of what’s known as biomimicry. But it’s more than that. AeroSHARK is also an example of the measures the airline industry is willing to take amid a heightened focus on the industry’s contributions to anthropogenic greenhouse-gases. Before the Covid-19 pandemic, traveling by air contributed about 2.5% of greenhouse gases. With travel bouncing back and the industry pledging to cut emissions to zero, the pressure is on to eke out any way possible to make flying greener. 

How three companies are solving problems using biomimicry

Read the full story at GreenBiz.

At Circularity 22 last week, a session led by the Biomimicry Institute explored how some companies are looking towards nature for inspiration. Biomimicry is the design paradigm that models products, materials, structures and systems on systems and practices found in nature and biology. 

The Nature of Fashion: Design for Decomposition

The Biomimicry Institute is leading a two-year, multi-million dollar project to demonstrate scalable new pathways for ~92 million tonnes of fashion waste discarded annually by embracing true decomposition—the way leaves break down into soil—that builds healthy ecosystems.

Lotus effect: Self-cleaning bioplastics repel liquid and dirt

Read the full story from RMIT University.

Inspired by the always immaculate lotus leaf, researchers have developed a self-cleaning bioplastic that is sturdy, sustainable and compostable..

Bio-inspired retrofit may save manufacturers millions of gallons of water annually

Read the full story at ProFood World.

Namib desert beetles capture water droplets from fog. To fight water scarcity, an MIT-spinoff uses the same concept to capture and recycle vapor from cooling tower plumes, saving water and cutting costs in manufacturing facilities.