Category: Invasive species

Team discovers invasive-native crayfish hybrids in Missouri

Read the full story from the University of Illinois.

In a study of crayfish in the Current River in southeastern Missouri, researchers discovered – almost by chance – that the virile crayfish, Faxonius virilis, was interbreeding with a native crayfish, potentially altering the native’s genetics, life history and ecology. Reported in the journal Aquatic Invasions, the study highlights the difficulty of detecting some of the consequences of biological invasions, the researchers say.

Butterflies released in Finland contained parasitic wasps – with more wasps inside

Read the full story in The Guardian.

Introduction of Glanville fritillary leads to emergence of three new species on to Baltic Sea island.

Kansas boy’s insect entry at state fair wins prize – and triggers federal inquiry

Read the full story in The Guardian.

A young contestant’s proud entry at the Kansas state fair caused a flap when a judge saw the specimen submitted in the boy’s exhibition box – and it prompted a federal investigation.

The show item was a dead spotted lanternfly the boy had discovered at his home – an invasive moth-like bug that has been causing massive damage to plants in US eastern states but had not previously been thought to have reached Kansas.

Why you should kill this colorful bug on sight, officials say

Read the full story from 5Chicago.

The spotted lanternfly might look beautiful, but if you see one in person, officials want you to kill it immediately and then report it.

What misfortune has befallen this one-inch insect with two sets of spotted, banded wings? Turns out the spotted lanternfly is a federally regulated invasive pest, according to Julie Janoski, The Morton Arboretum’s Plant Clinic manager.

The invasive emerald ash borer has destroyed millions of trees – scientists aim to control it with tiny parasitic wasps

Emerald ash borer larva cut these feeding galleries on the trunk of a dead ash tree in Michigan. corfoto via Getty Images

by Kristine Grayson (University of Richmond)

The emerald ash borer (Agrilus planipennis) is a deceptively attractive metallic-green adult beetle with a red abdomen. But few people ever actually see the insect itself – just the trail of destruction it leaves behind under the bark of ash trees.

These insects, which are native to Asia and Russia, were first discovered in Michigan in 2002. Since then they have spread to 35 states and become the most destructive and costly invasive wood-boring insect in U.S. history. They have also been detected in the Canadian provinces of Ontario, Quebec, Manitoba, New Brunswick and Nova Scotia.

In 2021 the U.S. Department of Agriculture stopped regulating the movement of ash trees and wood products in infested areas because the beetles spread rapidly despite quarantine efforts. Now federal regulators and researchers are pursuing a different strategy: biological control. Scientists think that tiny parasitic wasps, which prey on emerald ash borers in their native range, hold the key to curbing this invasive species and returning ash trees to North American forests.

Metallic green beetle.
Adult emerald ash borer beetles are about 0.5 inches long (photo not to scale). PA DEC, CC BY

I study invasive forest insects and work with the USDA to develop easier ways of raising emerald ash borers and other invasive insects in research laboratories. This work is critical for discovering and testing ways to better manage forest recovery and prevent future outbreaks. But while the emerald ash borer has spread uncontrollably in nature, producing a consistent laboratory supply of these insects is surprisingly challenging – and developing an effective biological control program requires a lot of target insects.

The value of ash trees

Researchers believe the emerald ash borer likely arrived in the U.S. on imported wood packaging material from Asia sometime in the 1990s. The insects lay eggs in the bark crevices of ash trees; when larvae hatch, they tunnel through the bark and feed on the inner layer of the tree. Their impact becomes apparent when the bark is peeled back, revealing dramatic feeding tracks. These channels damage the trees’ vascular tissue – internal networks that transport water and nutrients – and ultimately kill the tree.

Before this invasive pest appeared on the scene, ash trees were particularly popular for residential developments, representing 20-40% of planted trees in some Midwestern communities. Emerald ash borers have killed tens of millions of U.S. trees with an estimated replacement cost of US$10-25 billion.

Ash wood is also popular for lumber used in furniture, sports equipment and paper, among many other products. The ash timber industry produces over 100 million board feet annually, valued at over $25 billion.

Why quarantines have failed

State and federal agencies have used quarantines to combat the spread of several invasive forest insects, including Asian longhorned beetles and Lymantria dispar, previously known as gypsy moth. This approach seeks to reduce the movement of eggs and young insects hidden in lumber, nursery plants and other wood products. In counties where an invasive species is detected, regulations typically require wood products to be heat-treated, stripped of bark, fumigated or chipped before they can be moved.

The federal emerald ash borer quarantine started with 13 counties in Michigan in 2003 and increased exponentially over time to cover than a quarter of the continental U.S. Quarantines can be effective when forest insect pests mainly spread through movement of their eggs, hitchhiking long distances when humans transport wood.

However, female emerald ash borers can fly up to 12 miles per day for as long as six weeks after mating. The beetles also are difficult to trap, and typically are not detected until they have been present for three to five years – too late for quarantines to work.

Map showing range of ash trees and counties where emerald ash borer has been detected.
The emerald ash borer has been detected throughout much of the range of ash trees in the U.S. USDA

Next option: Wasps

Any biocontrol plan poses concerns about unintended consequences. One notorious example is the introduction of cane toads in Australia in the 1930s to reduce beetles on sugarcane farms. The toads didn’t eat the beetles, but they spread rapidly and ate lots of other species. And their toxins killed predators.

Introducing species for biocontrol is strictly regulated in the U.S. It can take two to 10 years to demonstrate the effectiveness of potential biocontrol agents, and obtaining a permit for field testing can take two more years. Scientists must demonstrate that the released species specializes on the target pest and has minimal impacts on other species.

Four wasp species from China and Russia that are natural enemies of the emerald ash borer have gone through the approval process for field release. These wasps are parasitoids: They deposit their eggs or larvae into or on another insect, which becomes an unsuspecting food source for the growing parasite. Parasitoids are great candidates for biocontrol because they typically exploit a single host species.

The selected wasps are tiny and don’t sting, but their egg-laying organs can penetrate ash tree bark. And they have specialized sensory abilities to find emerald ash borer larva or eggs to serve as their hosts.

Ash borer larva and a wasp species that preys on it.
An emerald ash borer larva in wood (left); Tetrastichus planipennisi, a parasitic wasp that preys on ash borers; and wasp larva that have grown and eaten the ash borer. USDA, CC BY-ND

The USDA is working to rear massive numbers of parasitoid wasps in lab facilities by providing lab-grown emerald ash borers as hosts for their eggs. Despite COVID-19 disruptions, the agency produced over 550,000 parasitoids in 2020 and released them at over 240 sites.

The goal is to create self-sustaining field populations of parasitoids that reduce emerald ash borer populations in nature enough to allow replanted ash trees to grow and thrive. Several studies have shown encouraging early results, but securing a future for ash trees will require more time and research.

One hurdle is that emerald ash borers grown in the lab need fresh ash logs and leaves to complete their life cycle. I’m part of a team working to develop an alternative to the time- and cost-intensive process of collecting logs: an artificial diet that the beetle larvae can eat in the lab.

Fresh cut ash logs await processing to collect newly emerging emerald ash borer adults, which will lay eggs for the laboratory colony. Anson Eaglin/USDA

The food must provide the right texture and nutrition. Other leaf-feeding insects readily eat artificial diets made from wheat germ, but species whose larvae digest wood are pickier. In the wild, emerald ash borers only feed on species of ash tree.

In today’s global economy, with people and products moving rapidly around the world, it can be hard to find effective management options when invasive species become established over a large area. But lessons learned from the emerald ash borer will help researchers mobilize quickly when the next forest pest arrives.

This article has been updated to correct the plural form of larva to larvae.

Kristine Grayson, Associate Professor of Biology, University of Richmond

This article is republished from The Conversation under a Creative Commons license. Read the original article.

‘World’s worst invasive weed’ sold at many U.S. garden centers

Read the full story in Smithsonian Magazine.

Banned by federal and state regulators, many invasive plants are still being sold at garden centers, nurseries and online retailers nationwide.

Scientists study the genetics of invasive mussels seeking ways to turn off the genes that allow them to spread and survive

Read the full story in the Chicago Tribune.

Throughout the country, scientists are studying a range of control methods to uproot invasive mussels, hoping that — like the threads that glue the mollusks down — something eventually sticks.

An estimated 300 trillion invasive mussels blanket Lake Michigan. Eradication may be impossible, but small-scale removal efforts could be the answer.

Read the full story in the Chicago Tribune.

Today in Lake Michigan, quagga mussels, Eastern European invaders generally smaller than a stamp, reign over an upended underwater ecosystem. The mussels arrived in the Great Lakes more than three decades ago, eating, excreting and spreading zealously ever since, attaching themselves to everything from water intakes to shipwrecks, and all the while filtering life out of the food chain and a $7 billion fishing industry.

But solutions in open water, at least on a small scale, are starting to seem possible to soften the bivalves’ brunt.

The climate impact of wild pigs greater than a million cars, study finds

Read the full story from the University of Queensland.

By uprooting carbon trapped in soil, wild pigs are releasing around 4.9 million metric tonnes of carbon dioxide annually across the globe, the equivalent of 1.1 million cars, according to new research.

Why does the state of Illinois want to rename Asian carp? Racism and economics

Read the full story in the Southern Illinoisan.

The state of Illinois wants to rebrand Asian carp for two reasons:

Economics and racism.

A new, non-carp name could help make the fish seem more inviting on restaurant menus, said Kevin Irons, assistant chief of fisheries for the Illinois Department of Natural Resources. More consumption could increase the harvest of the invasive species and thus help the Illinois River and other waterways.

Further, Irons said, Illinois wants to steer away from any racist implications by the “Asian” reference.

%d bloggers like this: