Battery Policies and Incentives Search

Use this tool from DOE’s Office of Energy Efficiency & Renewable Energy to search for policies and incentives related to batteries developed for electric vehicles and stationary energy storage. Find information related to electric vehicle or energy storage financing for battery development, including:

  • grants, tax credits, and research funding;
  • battery policies and regulations; and
  • battery safety standards.

New model finds best sites for electric vehicle charging stations

Read the full story from North Carolina State University.

Researchers from North Carolina State University have developed a computational model that can be used to determine the optimal places for locating electric vehicle (EV) charging facilities, as well as how powerful the charging stations can be without placing an undue burden on the local power grid.

Recycling renewables: A special series

As the world rolls out more solar panels, wind turbines and batteries, we’re cleaning up electricity — and generating a lot of equipment that will ultimately need to be recycled. The clean energy sector has drastically lower impacts on the environment than fossil fuels, but still needs to do its part to conserve resources and curb waste. In this week of special coverage, Canary Media reports on the technologies, policies and companies that can make clean energy even cleaner.

Articles in the series include:

Webinar: Development of Battery Collection Best Practices and Labeling Feedback

Jun 30, 2022 11 am CDT
Register here.

EPA is hosting virtual feedback sessions to provide input on new Bipartisan Infrastructure Law initiatives about end-of-life battery collection and labeling. This session is for all stakeholders involved in the battery lifecycle to provide input on new battery recycling initiatives. This includes:

  • battery manufacturers;
  • battery retailers;
  • battery recyclers;
  • consumers and businesses that purchase batteries;
  • companies in the electric vehicle management chain; and
  • tribal, state, and local government agencies.

EPA is seeking feedback on:

  • What types of batteries should EPA include in the best practices for collection (e.g., small consumer batteries, electric vehicle and grid storage batteries, industrial batteries, etc.)?
  • What are the current barriers to safe and effective battery collection and recycling?
  • What practices exist to improve battery collection and recycling, especially to increase the safe recovery of critical minerals?
  • What types of communication and outreach activities are most useful to reach key battery stakeholders?
  • What existing labeling programs should EPA use to inform a new labeling program?

Finding the building blocks for next-generation batteries

Read the full story from the University of Chicago.

With more than a trillion tons of carbon dioxide now circulating in the atmosphere, and global temperatures projected to rise anywhere from 2 degrees to 9.7 degrees Fahrenheit in the next 80 years, switching from fossil fuels to renewable energy is a subject of critical attention. To make that switch, humanity will need entirely new methods for storing energy. 

The current standard, lithium-ion batteries, rely on flammable electrolytes and can only be recharged about a thousand times before their capacity is dramatically reduced. Other potential successors have their own issues. Lithium metal batteries, for example, suffer from a short lifespan due to long needle-like deformities called dendrites that develop whenever electrons are shuttled between Li-metal batteries’ anode and cathode.

To Chibueze Amanchukwu, Neubauer Family Assistant Professor of Molecular Engineering at the Pritzker School of Molecular Engineering at the University of Chicago, such thorny chemistry boils down to one flawed and often overlooked process—modern electrolyte design.

Questions facing the lithium-ion battery future

Read the full story at Solar Builder.

Advanced batteries are the storage system favored by utilities and microgrids. The electric future — including expected dramatic growth in EV adoption — is close. Or is it? This was the big question asked during an April 22 webinar hosted by the US Energy Association.

How a cognitive bias is blocking the rise of electric cars

Read the full story from Université de Genève.

What are the barriers to the adoption of electric cars? Although the main financial and technological obstacles have been removed, their market share still needs to increase. In a recent study, a team investigated the cognitive factors that still dissuade many people from switching to electric cars. They found that car owners systematically underestimate the capacity of electric driving ranges to meet their daily needs.

Glencore partners with battery recycling startup

Read the full story at E-Scrap News.

Glencore has signed a supply agreement with and agreed to invest $200 million in Toronto-based lithium-ion battery recycling startup Li-Cycle.

The global mining and metals refining company signed a deal to supply manufacturing scrap and end-of-life lithium-ion batteries to Li-Cycle, a publicly traded company. Glencore, which supplies metals used to make batteries, also signed a non-binding term sheet that could lead to contracts to buy and sell various battery materials with Li-Cycle.

‘A lot of room for improvement’: Lithium-ion battery makers explore better recycling amid supply woes

Read the full story at Supply Chain Dive.

The Russia-Ukraine war and booming EV demand are contributing to surging battery commodity prices. Federal funding and private-sector investments could boost recycling.

Meet the power plant of the future: Solar + battery hybrids are poised for explosive growth

By pairing solar power and battery storage, hybrids can keep providing electricity after dark. Petmal via Getty Images

by Joachim Seel, Lawrence Berkeley National Laboratory; Bentham Paulos, Lawrence Berkeley National Laboratory, and Will Gorman, Lawrence Berkeley National Laboratory

America’s electric power system is undergoing radical change as it transitions from fossil fuels to renewable energy. While the first decade of the 2000s saw huge growth in natural gas generation, and the 2010s were the decade of wind and solar, early signs suggest the innovation of the 2020s may be a boom in “hybrid” power plants.

A typical hybrid power plant combines electricity generation with battery storage at the same location. That often means a solar or wind farm paired with large-scale batteries. Working together, solar panels and battery storage can generate renewable power when solar energy is at its peak during the day and then release it as needed after the sun goes down.

A look at the power and storage projects in the development pipeline offers a glimpse of hybrid power’s future.

Our team at Lawrence Berkeley National Laboratory found that a staggering 1,400 gigawatts of proposed generation and storage projects have applied to connect to the grid – more than all existing U.S. power plants combined. The largest group is now solar projects, and over a third of those projects involve hybrid solar plus battery storage.

While these power plants of the future offer many benefits, they also raise questions about how the electric grid should best be operated.

Why hybrids are hot

As wind and solar grow, they are starting to have big impacts on the grid.

Solar power already exceeds 25% of annual power generation in California and is spreading rapidly in other states such as Texas, Florida and Georgia. The “wind belt” states, from the Dakotas to Texas, have seen massive deployment of wind turbines, with Iowa now getting a majority of its power from the wind.

This high percentage of renewable power raises a question: How do we integrate renewable sources that produce large but varying amounts of power throughout the day?

Joshua Rhodes/University of Texas at Austin.

That’s where storage comes in. Lithium-ion battery prices have rapidly fallen as production has scaled up for the electric vehicle market in recent years. While there are concerns about future supply chain challenges, battery design is also likely to evolve.

The combination of solar and batteries allows hybrid plant operators to provide power through the most valuable hours when demand is strongest, such as summer afternoons and evenings when air conditioners are running on high. Batteries also help smooth out production from wind and solar power, store excess power that would otherwise be curtailed, and reduce congestion on the grid.

Hybrids dominate the project pipeline

At the end of 2020, there were 73 solar and 16 wind hybrid projects operating in the U.S., amounting to 2.5 gigawatts of generation and 0.45 gigawatts of storage.

Today, solar and hybrids dominate the development pipeline. By the end of 2021, more than 675 gigawatts of proposed solar plants had applied for grid connection approval, with over a third of them paired with storage. Another 247 gigawatts of wind farms were in line, with 19 gigawatts, or about 8% of those, as hybrids.

Bar chart showing overwhelming increase in solar since 2014 compared to other sources and fast rise in batteries in the past two years.
The amount of proposed solar, storage and wind power waiting to hook up to the grid has grown dramatically in recent years, while coal, gas and nuclear have faded. Lawrence Berkeley National Laboratory

Of course, applying for a connection is only one step in developing a power plant. A developer also needs land and community agreements, a sales contract, financing and permits. Only about one in four new plants proposed between 2010 and 2016 made it to commercial operation. But the depth of interest in hybrid plants portends strong growth.

In markets like California, batteries are essentially obligatory for new solar developers. Since solar often accounts for the majority of power in the daytime market, building more adds little value. Currently 95% of all proposed large-scale solar capacity in the California queue comes with batteries.

5 lessons on hybrids and questions for the future

The opportunity for growth in renewable hybrids is clearly large, but it raises some questions that our group at Berkeley Lab has been investigating.

Here are some of our top findings:

  • The investment pays off in many regions. We found that while adding batteries to a solar power plant increases the price, it also increases the value of the power. Putting generation and storage in the same location can capture benefits from tax credits, construction cost savings and operational flexibility. Looking at the revenue potential over recent years, and with the help of federal tax credits, the added value appears to justify the higher price.
  • Co-location also means tradeoffs. Wind and solar perform best where the wind and solar resources are strongest, but batteries provide the most value where they can deliver the greatest grid benefits, like relieving congestion. That means there are trade-offs when determining the best location with the highest value. Federal tax credits that can be earned only when batteries are co-located with solar may be encouraging suboptimal decisions in some cases.
Rows of solar panels and two batteries the size of small shipping containers sit in a field.
Hybrid power has become standard in Hawaii as solar power saturates the grid. Dennis Schroeder/NREL
  • There is no one best combination. The value of a hybrid plant is determined in part by the configuration of the equipment. For example, the size of the battery relative to a solar generator can determine how late into the evening the plant can deliver power. But the value of nighttime power depends on local market conditions, which change throughout the year.
  • Power market rules need to evolve. Hybrids can participate in the power market as a single unit or as separate entities, with the solar and storage bidding independently. Hybrids can also be either sellers or buyers of power, or both. That can get complicated. Market participation rules for hybrids are still evolving, leaving plant operators to experiment with how they sell their services.
  • Small hybrids create new opportunities: Hybrid power plants can also be small, such as solar and batteries in a home or business. Such hybrids have become standard in Hawaii as solar power saturates the grid. In California, customers who are subject to power shutoffs to prevent wildfires are increasingly adding storage to their solar systems. These “behind-the-meter” hybrids raise questions about how they should be valued, and how they can contribute to grid operations.

Hybrids are just beginning, but a lot more are on the way. More research is needed on the technologies, market designs and regulations to ensure the grid and grid pricing evolve with them.

While questions remain, it’s clear that hybrids are redefining power plants. And they may remake the U.S. power system in the process.

Joachim Seel, Senior Scientific Engineering Associate, Lawrence Berkeley National Laboratory; Bentham Paulos, Affiliate, Electricity Markets & Policy Group, Lawrence Berkeley National Laboratory, and Will Gorman, Graduate Student Researcher in Electricity Markets and Policy, Lawrence Berkeley National Laboratory

This article is republished from The Conversation under a Creative Commons license. Read the original article.