Point/Counterpoint on Ethanol

Yale Environment 360 has an interesting point/counterpoint on ethanol.

  • The Case Against More Ethanol: It’s Simply Bad for Environment: The revisionist effort to increase the percentage of ethanol blended with U.S. gasoline continues to ignore the major environmental impacts of growing corn for fuel and how it inevitably leads to higher prices for this staple food crop. It remains a bad idea whose time has passed.
  • The Case for More Ethanol: Why Green Critics Are Wrong: The criticism of ethanol by environmentalists is misguided and just plain wrong. In fact, thanks to improvements in farming techniques, increasing the amount of corn ethanol in U.S. gasoline would reduce air pollution, provide significant health benefits, and lower greenhouse gas emissions.

Bioenergy Knowledge Discovery Framework

The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration toolkit and data resource providing access to the latest research on bioenergy. The site supports the creation of a robust, advanced, domestic bioenergy industry for the United States, offering resources for researchers, private industry, policy makers, and the public. In the KDF, users can:

  • Search the Bioenergy Library to find datasets, publications, and models on a wide variety of bioenergy topics.
  • Use the map interface to visualize, analyze, download, and export geospatial data.
  • Browse the site’s collection of specialized Tools & Apps, which can also be launched on the map.

The Bioenergy Library contains hundreds of publications, datasets, and models specifically related to the production, distribution, delivery, and end use of bioenergy. Many of the Bioenergy Library publication records include abstracts and links to full-text content. Additionally, users can add data to certain datasets and visualize them on the KDF map. Registered users also have the ability to comment on entries and share links with others via email and social networking sites.

Algae + Papaya = Biofuel

Read the full story from the Agricultural Research Service.

There was a time when a green mat of algae was little more than pond scum—but no longer. Now, thanks to advances in science and technology, these microscopic plants are considered promising natural sources of oil that can be converted to biodiesel fuel.

At the Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center in Hilo, Hawaii, Agricultural Research Service (ARS) plant pathologist Lisa Keith has spent the past 5 years fine-tuning conditions under which Chlorella protothecoides algae can be coaxed into producing oil from discarded papayas and other unmarketable crops or byproducts, like glycerol. The effort is part of a zero-waste system being championed and supported by the Hawaii Department of Agriculture (HDOA) to ease the Island State’s reliance on imported oil for its fuel and energy needs.

Efficient transfer of CO2 to microalgal systems

Read the full story in Algae Industry Magazine.

Researchers have developed a new inexpensive and environmentally friendly technique to deliver carbon dioxide to microalgae, according to a study at the University of Melbourne. The technique involves a novel combination of solvent absorption, membrane desorption and microalgal cultivation to capture carbon dioxide and convert it to a lipid-rich biomass.

Study: Bacteria attack lignin with enzymatic tag team

Read the full story from Rice University.

The molecules that impart strength to paper, bamboo and wood-frame buildings — lignin and cellulose — have long stymied biofuels researchers by locking away more than half of a plant’s energy-yielding sugar. In a study that could point the way to biofuels processes of the future, scientists from Rice University, the Great Lakes Bioenergy Research Center at the University of Wisconsin-Madison and the Joint BioEnergy Institute at Emeryville, Calif., have discovered how two bacterial enzymes work as a team to break apart lignin.