Webinar: The cost benefit of pollution prevention and source reduction in manufacturing

Nov 4, 2021, 1-2 pm
Register here.

This webinar will provide an overview of implementing pollution prevention (P2) concepts and practices in manufacturing. P2 methods involve everything from fixing leaking valves and seals to redesigning a product or process to eliminate toxic materials. Examples of reducing or eliminating the creation of pollutants at the source in manufacturing facilities will highlight cost reductions and the elimination of hazardous materials, energy, and water. Cost benefit analysis, cash flow analysis, and implementation costs of the pollution prevention recommendations will be presented. This webinar is sponsored in part by The EPA Pollution Prevention Program and ECU’s Center for Sustainable Energy and Environmental Engineering.

Illinois bills to expand electric vehicle production, certify health workers head to Pritzker

Read the full story from the State Journal-Register.

  • State tax credits that are part of a bill to encourage increases in electric-vehicle and auto battery production in the state follow the recent enactment of clean-energy legislation passed by the General Assembly in September and signed into law by Pritzker.
  • House Bill 1769, a major priority of the governor’s that was dubbed the Reimagining Electric Vehicles in Illinois Act, passed the Senate unanimously and by a vote of 110-2 in the House.

Mongabay internships now open for Spring 2022

Mongabay.org is once again offering its internship program, which primarily involves writing environmental news stories for their affiliated news site – Mongabay.com.

What you will do

Interns will have the opportunity to develop their writing skills and have their news stories be published on their renowned website which boasts over two million global readers every month. This internship will run from Jan 1 – June 30, 2022 with a six-month commitment.

To allow a more diverse pool of candidates that get accepted into our internship program, we plan to select at least a candidate from the Global South and another from the Global North region. We encourage applicants who identify as being from or part of these regions to apply.

How to apply

For more information on how to apply, click here.

Gas stoves and water heaters face a climate change reckoning

Read the full story at Yahoo! News.

In 2019, Berkeley became the first city in the country to ban gas stoves and water heaters in all new construction in order to cut down greenhouse gas emissions that are causing climate change. Since then, dozens of others, including Seattle, San Francisco and New York, have followed suit with similar restrictions and President Biden has laid out an ambitious plan to help Americans ditch gas appliances and heaters in favor of electric ones.

EU launches the largest-ever green bond issue, deal draws record demand

Read the full story at ESG Today.

The sustainable finance market passed another record today, with the European Commission launching the largest ever green bond offering in a €12 billion 15-year bond offering, eclipsing the record-setting £10 billion inaugural Green Gilt issuance by the UK last month.

A forgotten mangrove forest around remote inland lagoons in Mexico’s Yucatan tells a story of rising seas

A stand of red mangroves in the calm, calcium-rich, fresh waters of the San Pedro Mártir River, Tabasco, Mexico. Ben Meissner, CC BY-ND

by Sula E Vanderplank, San Diego State University

The San Pedro River winds from rainforests in Guatemala through the Yucatan Peninsula in eastern Mexico. There, this peaceful river widens into a series of slow-flowing lakes. Along a remote 50-mile (80-kilometer) stretch, thousands of red mangroves – trees commonly found along tropical coastlines – line the river’s banks and gentle waterfalls.

Unlike mangroves elsewhere, these trees grow in freshwater. This means that many other species can grow with them: orchids, bromeliads and other air and land plants that cannot tolerate the saline conditions where red mangroves are normally found. It’s a magical garden, and also a scientific puzzle: How did these mangroves come to be growing some 125 miles (200 kilometers) inland, 85 to 120 feet (25 to 37 meters) above sea level, in an entirely freshwater ecosystem?

I am part of a multidisciplinary team of researchers from Mexico and the U.S. that sought to answer this question by comparing these trees to other mangroves across the broader Yucatan Peninsula region. We also analyzed sediment cores from the San Pedro River terraces, which showed strong indications that the sediments had been created in coastal areas.

We found that the mangroves of the river have been separated from coastal mangroves for around 120,000 years. This coincides with the Last Interglacial – a warm period between ice ages, about 125,000 years ago, when glaciers and polar ice caps melted almost entirely.

During that time, the Earth was even warmer than at present and sea levels were 20 to 30 feet (6 to 9 meters) higher. These mangroves’ ancestors were coastal trees that were left isolated as the planet cooled during the Wisconsin Glaciation – the last era when glaciers expanded across North America. As the glaciers spread, sea levels fell, exposing more land around them. Now, this unique forest, a footprint of the past, is at risk of deforestation and development that could prevent scientists from studying it for more insights into Earth’s climate history.

Fish swim among mangrove roots
Fish and other aquatic life in the San Pedro Martir River in Tabasco, Mexico, amid submerged red mangrove roots. Octavio Aburto, CC BY-ND

Mangroves and fresh water

The red mangrove (Rhizophora mangle) is an iconic tree that is enormously important to commercial and artisanal fisheries around the world. Juvenile fish shelter among mangroves’ tangled roots, feeding and growing until they are large enough to avoid predators.

Our study focused on two inland lagoons created by giant cenotes – natural sinkholes in the Yucatan’s limestone bedrock – near the Caribbean coast. Red mangroves reproduce via seeds that germinate while they are still attached to mother plants, then drop onto a bank or into the water, where they float away and establish themselves on adjacent banks. This adaptation enables mangroves to spread along coastlines, even though saltwater is toxic to most seeds and makes germination very difficult.

We were fascinated to know how the San Pedro mangroves got there. Their seedlings couldn’t float upstream for so many miles, and the forest on the banks was large and well-established, which made it seem highly unlikely that an animal or human could have brought the seeds inland. To our knowledge, the San Pedro River mangroves are unique in existing so far from the coast.

Isolation and fragmentation

One way to determine where plants may have come from is to see whether they are genetically related to colonies of similar plants elsewhere in a region. So we conducted a genetic investigation that looked for single-nucleotide polymorphisms, or “snips” – differences in a single DNA building block between one plant and another.

We found that the closest relatives to the San Pedro River’s isolated mangroves were mangroves at the Terminos Lagoon on the Yucatan’s western coast, along the Gulf of Mexico. Mangroves from both river communities also were closely related to other coastal populations on the Gulf of Mexico. However, they were very distinct from other freshwater inland mangrove populations in cenotes on the Yucatan’s eastern coast along the Caribbean, and those populations are distinct in turn from other coastal mangroves.

We cored the largest mangrove trees at three sites, extracting pencil-shaped samples from their trunks that showed their growth rings, to get a sense of how long these trees lived – about 100 years – and how many generations of trees had lived there. Then we multiplied that figure by a mean genetic mutation rate to estimate how old the San Pedro mangroves were when they diverged genetically from other mangroves, and how long ago that divergence occurred.

We calculated that the San Pedro River and Terminos Lagoon mangrove populations separated genetically approximately 100,000 years ago. This supports our hypothesis that the San Pedro River mangroves are a relict from the last interglacial, some 120,000 years ago.

Our data also suggests that something drastically reduced the size of the isolated inland population of San Pedro River mangroves. This created what scientists call a genetic or population bottleneck, meaning that its gene pool became much smaller. As a result, the current population has a more unique genetic signature than mangroves elsewhere. Amazingly, this change was caused by just 30 feet (9 meters) of change in sea level.

Climate change is raising global sea levels in two ways: water expands as it warms, and ice sheets and glaciers on land are melting.

What else does this unique forest hold?

Our discovery raises an obvious question: Which other species have been isolated in this unique ecosystem for the past 125,000 years? Are there insects? Fungi? We hope scientists who study other types of organisms will explore this area and look for more relicts.

But this special place is at risk. The region was systematically deforested in the 1970s as part of a development plan, but the banks of the San Pedro River escaped the bulldozers because the terrain was challenging. New threats loom today, such as a proposed 950-mile (1,529 km) train route that would carry thousands of visitors to Mayan archaeological sites.

Mayan river systems contain a wealth of cultural and biological riches. Now, we also know that the story of extreme climate change and sea level rise during the Pleistocene is recorded in the DNA of these plants.

They show how dramatically climate change could alter coastal ecosystems along the Gulf of Mexico and many other shorelines if nations do not take urgent action to reduce greenhouse gas emissions that drive climate change. My colleagues and I believe the San Pedro River deserves protection as a testament to both resilience and adaptation in a changing climate.

Sula E Vanderplank, Adjunct Professor, San Diego State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Northern Illinois ‘Google farmer’ researches regenerative approach

Matt Gehrke, a DeKalb producer who launched a grass-fed beef business eight years ago, says he is making more on the cattle per acre than he would have with corn and soybeans.

What does our climate-changed future look like? Here are three possibilities

Read the full story at Fast Company.

Our future may look bleak, but it’s not a reason to give up on curbing climate change. Bold and aggressive moves now could still save us from absolute catastrophe.

How Chicago’s poop becomes amazing fertilizer

Read the full story at Next City.

Gardeners in Chicago now have a secret weapon in their quest to grow the juiciest tomatoes or the tallest sunflowers — other people’s poop.

Why a group of zoo and aquarium professionals wants to ensure the future of their field is more inclusive

Read the full story in Smithsonian Magazine.

Over 300 professionals across the U.S. are putting visibility and representation in the zoo and aquarium field at the forefront of their work, focusing on approaches such as networking, outreach, mentorship, and professional development.