Day: November 12, 2020

Chipotle lets diners track environmental impact of burritos as restaurants prioritize sustainability

Read the full story at Restaurant Dive.

Chipotle today launched a “Real Foodprint” tracker on its app and website that lets diners measure and share the environmental impact of their orders, according to a press release.

The chain partnered with independent researcher HowGood on the digital tool that analyzes five key metrics around the sourcing of Chiptole’s ingredients, including carbon waste, gallons of water, soil health, use of organic land and antibiotics. Customers can post their findings to social media through a Twitter integration.

To raise awareness for the rollout, Chipotle tapped TV personality Bill Nye on a digital spot and TikTok video that explain how the tracker works. The brand is the latest restaurant to jump on the sustainability trend as consumers grow more aware of how food supply chains significantly contribute to environmental degradation and climate change.

Cities’ GHG emissions reduction efforts, by the numbers

Read the full story from Utility Dive.

A new Brookings report assessed the nation’s many climate action plans to check if cities are meeting their emissions reduction commitments.

Ideas inspired by nature could change the way our towns and cities look

Read the full story from CNBC.

Daan Roosegaarde is an artist based in the Netherlands. Alongside a team of engineers and designers, his “social design lab” produces work that attempts to boost quality of life in urban settings.

Study: Central Illinois Venison Often Contaminated With Lead

Read the full story from WGLT.

A study done by two Illinois Wesleyan University professors and a Bloomington veterinarian shows 48% of ground venison packets sampled had lead contamination.

The research from Given Harper, Aaron Schultz Wilson, and veterinarian Matt Fraker appeared in the Bulletin of Environmental Contamination and Toxicology. It analyzed ground venison packets from shotgun and archery-harvested white-tailed deer in Illinois in 2013 and 2014. 

Upcycling polyethylene plastic waste into valuable molecules

Read the full story from the University of California – Santa Barbara.

Researchers develop a one-pot, low temperature catalytic method to turn polyethylene polymers into alkylaromatic molecules.

Associated journal article: Fan Zhang, Manhao Zeng, Ryan D. Yappert, Jiakai Sun, Yu-Hsuan Lee, Anne M. LaPointe, Baron Peters, Mahdi M. Abu-Omar, Susannah L. Scott. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatizationScience, 2020; 370 (6515): 437 DOI: 10.1126/science.abc5441

Scientists at work: Sloshing through marshes to see how birds survive hurricanes

A clapper rail with a fiddler crab in its bill. Michael Gray, CC BY-ND

by Scott Rush and Mark Woodrey (Mississippi State University)

When storms like Huricane Zeta menace the Gulf Coast, residents know the drill: Board up windows, clear storm drains, gas up the car and stock up on water, batteries and canned goods.

But how does wildlife ride out a hurricane? Animals that live along coastlines have evolved to deal with a world where conditions can change radically. This year, however, the places they inhabit have borne the brunt of 10 named storms, some just a few weeks apart.

As wildlife ecologists, we are interested in how species respond to stresses in their environment. We are currently studying how marsh birds such as clapper rails (Rallus crepitans) have adapted to tropical storms along the Alabama and Mississippi Gulf coast. Understanding how they do this entails wading into marshes and thinking like a small, secretive bird.

Least bittern in marsh grass
A least bittern, one of the smallest species of heron. Michael Gray, CC BY-ND

Mucky and full of life

Coastal wetlands are critically important ecosystems. They harbor fish, shellfish and wading birds, filter water as it flows through and buffer coastlines against flooding.

You wouldn’t choose a Gulf Coast salt marsh for a casual stroll. There are sharp-pointed plants, such as black needlerush​, and sucking mud. In summer and early fall the marshes are oppressively hot and humid. Bacteria and fungi in the mud break down dead material, generating sulfurous-smelling gases. But once you get used to the conditions, you realize how productive these places are, with a myriad of organisms moving about.

Marsh birds are adept at hiding in dense grasses, so it’s more common to hear them than to see them. That’s why we use a process known as a callback survey to monitor for them.

First we play a prerecorded set of calls to elicit responses from birds in the marsh. Then we determine where we think the birds are calling from and visually estimate the distance from the observer to that spot, often using tools such as laser range finders. We also note the type of ecosystem where we detect the birds – for example, whether they’re in a tidal marsh with emergent vegetation or out in the open on mud flats.

Through this process we’ve been able to estimate the distributions of several species in tidal marshes, including clapper rails, least bitterns (Ixobrychus exilis) and seaside sparrows (Ammospiza maritima). We’ve also plotted trends in their abundance and identified how their numbers can change with characteristics of the marsh.

We’ve walked hundreds of miles through marshes to locate nests and to record data such as nest height, density of surrounding vegetation and proximity to standing water, which provides increased foraging opportunities for rails. Then we revisit the nests to document whether they produce young that hatch and eventually leave. Success isn’t guaranteed: Predators may eat the eggs, or flooding could wash them out of the nest and kill the developing embryos inside. https://www.youtube.com/embed/3E32JHYSdSU?wmode=transparent&start=0 Salt marshes shelter many types of plants, birds, animals, fish and shellfish.

Rails in the grass

Our research currently focuses on clapper rails, which look like slender chickens with grayish-brown feathers and short tails. Like many other marsh birds, they have longish legs and toes for walking across soft mud, and long bills for probing the marsh surface in search of food. They are found year-round along the Atlantic and Gulf coasts.

Clapper rails typically live in tidal marshes where there is vegetation to hide in and plenty of fiddler crabs, among their frequent foods. Because they are generally common and rely on coastal marshes, they are a good indicator of the health of these coastal areas.

Scientist in marsh holding live Clapper Rail
Ecologist Scott Rush with clapper rail, Pascagoula River Marshes, Mississippi. Mark Woodrey, CC BY-ND

Water levels in tidal marshes change daily, and clapper rails have some adaptations that help them thrive there. They often build nests in areas with particularly tall vegetation to hide them from predators. And they can raise the height of the nest bowl to protect it against flooding during extra-high or “king” tides and storms. The embryos inside their eggs can survive even if the eggs are submerged for several hours.

When a tropical storm strikes, many factors – including wind speed, flooding and the storm’s position – influence how severely it will affect marsh birds. Typically birds ride out storms by moving to higher areas of the marsh. However, if a storm generates extensive flooding, birds in affected areas may swim or be blown to other locations. We saw this in early June when Hurricane Cristobal blew hundreds of clapper rails onto beaches in parts of coastal Mississippi.

Clapper rails hiding under a breakwater
Clapper rails on a Mississippi beach after Hurricane Cristobal in June 2020. Mark Woodrey, CC BY-ND

In coastal areas immediately to the east of the eye of a tropical cyclone we typically see a drop in clapper rail populations in the following spring and summer. This happens because the counterclockwise rotation of the storms results in the highest winds and storm surge to the north and east of the eye of the storm.

But typically there’s a strong bout of breeding and a population rebound within a year or so – evidence that these birds are quick to adapt. After Hurricane Katrina devastated the Mississippi Gulf Coast in 2005, however, depending on the type of marsh, it took several years for rail populations to return to their pre-Katrina levels.

Now we’re radio-tagging clapper rails and collecting data that allow us to determine the birds’ life spans. This information helps us estimate when large numbers of birds have died – information that we can correlate with events like coastal hurricanes.

2020 Atlantic hurricane paths
Summary map of the 2020 Atlantic hurricane season, updated Oct. 27. Master0Garfield/Wikipedia

Losing parts

Tropical storms have shaped coastal ecosystems since long before recorded history. But over the past 150 years humans have complicated the picture. Coastal development – draining marshes, building roads and reinforcing shorelines – is altering natural places that support marsh birds.

Clapper rails and other species have evolved traits that help them offset population losses due to natural disasters. But they can do so only if the ecosystems where they live keep providing them with food, breeding habitat and protection from predators. Coastal development, in combination with rising sea levels and larger tropical storms, can act like a one-two punch, making it increasingly hard for marshes and the species that live in them to recover.

Biologist Paul Ehrlich has compared species at risk to rivets on an airplane. You might not need every rivet in place for the airplane to fly, but would you fly it through a cyclone if you knew that 10% of its rivets were missing? What about 20%, or 30%? At some point, Ehrlich asserts, nature could lose so many species that it becomes unable to provide valuable services that humans take for granted.

We see coastal marshes as an airplane that humans are piloting through storms. As species and ecosystem services are pummeled, rivets are failing. No one knows where or how the aircraft will land. But we believe that preserving marshes instead of weakening them can improve the chance of a smooth landing.

Scott Rush, Assistant Professor of Wildlife Ecology and Management, Mississippi State University and Mark Woodrey, Assistant Research Professor, Mississippi State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

In the West, Lightning Grows as a Cause of Damaging Fires

Read the full story in the New York Times.

Wildfires in the West caused by lightning have been growing bigger and occurring more frequently. If the weather extremes already brought by climate change are any indication, other parts of the country will start paying a price, too.

Connections: Your Wardrobe, Your Planet And The Quarantine

Read the full story at Biocycle.

The used clothes business is not something we typically think of when we gear up to fight the battle against climate change. Maybe we should rethink that.

Burger King Dips Its Toe Into the Circular Economy

Read the full story at Triple Pundit.

Last year, an Impossible Whopper — next year, reusable packaging? Burger King has been leading the charge on food service sustainability and is now taking a step into the circular economy. The fast food chain announced earlier this month that it will begin offering reusable packaging, starting next year. A trial will begin at select restaurants in New York, Portland and Tokyo for sandwiches and drinks.

Making this move possible is Burger King’s partnership with TerraCycle’s Loop initiative, which facilitates corporate transitions to reusable packaging.

The trial is part of Burger King’s goal to source all packaging from renewable, recyclable or certified sources by 2025. And this step forward couldn’t have come at a better time, as many restaurants have resorted to single-use options during the coronavirus pandemic.

Here’s how much it would cost to move every home in the U.S. to zero-carbon energy

Read the full story in Fast Company.

A typical American household runs on fossil fuels: natural gas for heat, hot water, and the kitchen stove, gas or diesel to power the cars in the driveway, and coal and natural gas still powering the majority of the electricity flowing in the home, even as the amount of wind and solar on the grid quickly grows.

new report looks at what it would take for every household to fully decarbonize. Not only is it feasible with technology that exists today, it finds, but the shift could actually save Americans money.

%d bloggers like this: