War on weeds takes toll on beneficial bacteria in the soil

Read the full story at Phys.org.

As farmers battle in their above-ground war on weeds, they may inadvertently create underground casualties – unintentionally attacking the beneficial bacteria that help crops guard against enemy fungus, according to Cornell University research.

How Much Nitrate Is in Rural America’s Water?

Read the full story in In These Times.

On July 26, the Environmental Working Group (EWG) announced the launch of the their Tap Water Database: “Starting today, the vast majority of Americans can learn about every potentially harmful chemical in their drinking water and what scientists say are the safe levels of those contaminants.”

Unfortunately for us, there are a lot of “potentially harmful” chemicals to learn about and scientists don’t always agree on the definition of “safe.”

Regreening the Planet Could Account for One-Third of Climate Mitigation

Read the full story at e360.

Planting trees, restoring peatlands, and better land management could provide 37 percent of the greenhouse gas mitigation needed between now and 2030 to keep global warming to 2 degrees Celsius, according to a new study published in the Proceedings for the National Academy of Sciences.

Announcing the Transform Toxicity Testing Challenge Stage Two Winners

Scientists from EPA, NCATS, and NIEHS/NTP are using high speed, automated screening technologies called high-throughput screening (HTS) assays to rapidly test whether some of the thousands of chemicals in use may affect human health. However, since current HTS assays do not fully incorporate chemical metabolism, they may miss chemicals that are metabolized to a more toxic form.

To help capture that information, in January 2016, EPA launched the Transform Toxicity Testing Challenge along with their partners, the National Institutes of Health, National Center for Advancing Translational Sciences, and the National Toxicology Program housed within the National Institute for Environmental Health Science.

The Transform Toxicity Challenge asked teams of scientists to develop techniques to retrofit existing HTS assays to incorporate processes that reflect how chemicals are broken down and metabolized by the body. After selecting semi-finalists in May 2017, the EPA and its partners have selected the Transform Toxicity Challenge Stage Two winners.

Stage two winners have produced practical designs that bring us one step closer to turning existing, commonly used in vitro high-throughput chemical screening assays into tests which will evaluate both parent chemical and metabolite effects in the assay responses. Each Stage Two winner will receive a $100,000 prize.

The Stage Two winners are:

  • Dr. Brian Johnson, Onexio Biosystems LLC created MICRO MT (Metabolism Integrated Cell RepOrter MicroTiter plate), a system that uses the natural metabolic activity of human liver cell lines to generate chemical metabolites and then deliver these metabolites to existing reporter assays in a highly reproducible fashion. The MICRO MT format is technically simple, requires little additional equipment and is amenable to the high volume and high throughput needs of 21st century toxicology.
  • Dr. Moo-Yeal Lee, Cleveland State University and Mr. Rayton Gerald, Solidus Biosciencesdeveloped a 384-pillar plate that supports 3D cell cultures and comprises an array of human hepatic cells for gene expression and high-content toxicity screening. The plate can be a robust and flexible system for High Throughput screening of compounds and will enable retrofitting of existing ToxCast assays to have metabolic competence.
  • Dr. Lawrence Vernetti, HanKayTox Consulting developed a 96 and 384 well microtiter plate with capabilities to:
    • supply rodent or human hepatocytes in an on-demand format suitable to co-culture with a second cell or cell free assay;
    • supply 96 or 384 well microtiter plates of hepatocytes in an on-demand format suitable to pre-condition test agents for the sequential transfer of test agents and metabolites directly to the assay test plates, and;
    • prepare and store 384 and 1536 well daughter plates for on-demand use of test agents in media pre-conditioned by hepatocytes.
  • Dr. Hongbing Wang, University of Maryland School of Pharmacy developed a human primary hepatocyte (HPH)-immortalized cell co-culture model by using a transwell platform that can be scaled up to a HTS format, allowing currently used, cell culture-based screening assays to run in an environment that produces physiologically relevant metabolites.
  • Dr. Albert Li, In Vitro ADMET Laboratories LLC developed the IVAL Exogenous Metabolism System (patent-pending), which consists of a transwell insert containing human or animal hepatocytes. The EXM insert is placed into a cell culture well containing the target cells used for toxicity evaluation, serving as an exogenous hepatic metabolic system. The chemical to be evaluated is added to the EXM transwell, allowing metabolism by the hepatocytes in the insert. Both the parent chemical and its metabolites migrate across the semi-permeable membrane of the EXM transwell insert to interact with the target cells in the culture well. The IVAL EXM is compatible with current ToxCast assays which employ multi-well (e.g. 96-well) plates. Designing tests that produce physiologically-relevant metabolites helps researchers more accurately assess effects of chemicals and better protect human health.

JRC Publishes NANoREG Toolbox for the Safety Assessment of Nanomaterials

Read the full post at the Nano and Other Emerging Chemical Technologies Blog.

The European Commission (EC) Joint Research Center (JRC) has published the NANoREG Toolbox for the Safety Assessment of Nanomaterials

The NANoREG framework represents the project’s proposal for a common understanding in the field of environmental health and safety assessment of nanomaterials under the current European regulatory framework, with focus on the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation.  The Toolbox supports the implementation of the framework by providing an overview of available tools (test methods, datasets, models, guidance documents, and decision trees) useful to regulators and other stakeholders in the European REACH context.

This startup is creating biodegradable fabric from methane-eating bacteria

Read the full story in GreenBiz.

Humans have been employing worms to spin silk yarn for almost 5,000 years, so the idea that we can squeeze other natural fibers out of bacteria shouldn’t be so strange. But that actually wasn’t the original intention of Mango Materials co-founder and CEO Molly Morse, who started her research with methane-eating critters as a graduate student at Stanford University.

Her quest was to create a sturdy, bioadhesive that would help glue together biocomposites used as construction materials. The material’s biodegradation process got Morse and her now-chief technology officer, Allison Pieja — an engineer whose doctoral thesis centered on the production of poly-hydroxyalkanoate (PHA) from methane — thinking about different applications. And that’s about the time that their third co-founder, Anne Schauer-Gimenez, the startup’s vice president of customer engagement and an expert in anaerobic digestion, got involved.

 

Managing Fertilizer Saves Money, Improves Human, Environmental Health

Read the full story in AgPro.

Ohio’s waterways have a dirty history. In the 1960s, flames on the polluted Cuyahoga River helped spark the Clean Water Act. Today, another problem is flowing downstream.

With each rainfall, fertilizer runoff from fields flows through the watershed into Lake Erie, creating an unhealthy concentration of nitrogen and phosphorus in the water. On a warm summer day, the concentration of these elements creates the perfect habitat for toxic algae blooms. These blooms can block sunlight and out-compete other species, using up the oxygen in the water. This creates dead zones where fish, plants and other aquatic species cannot survive.

The agriculture industry is taking steps toward the more sustainable use of these fertilizers. Precision land management and controlling runoff through conservation practices can limit the impact agriculture has on the environment.