Shocking new way to get the salt out

Read the full story from MIT.

As the availability of clean, potable water becomes an increasingly urgent issue in many parts of the world, researchers are searching for new ways to treat salty, brackish or contaminated water to make it usable. Now a team at MIT has come up with an innovative approach that, unlike most traditional desalination systems, does not separate ions or water molecules with filters, which can become clogged, or boiling, which consumes great amounts of energy.

Instead, the system uses an electrically driven shockwave within a stream of flowing water, which pushes salty water to one side of the flow and fresh water to the other, allowing easy separation of the two streams. The new approach is described in the journal Environmental Science and Technology Letters, in a paper by professor of chemical engineering and mathematics Martin Bazant, graduate student Sven Schlumpberger, undergraduate Nancy Lu, and former postdoc Matthew Suss.

Clean Energy Manufacturing and Process Intensification Technology Assessments Available for Download

Two new technology assessment reports from The 2015 Quadrennial Technology Review (QTR) are now available.

Advanced Sensors, Controls, Platforms and Modeling for Manufacturing – 6C
Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing.

Process Intensification – 6J
Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing.

Natural Resources and Conflicts: A Guide for Mediation Practitioners

Download the document.

“Natural Resources and Conflict: A Guide for Mediation Practitioners” is a collaborative research project undertaken by the Policy and Mediation Division of the United Nations Department of Political Affairs (DPA/PMD) and the Environmental Cooperation for Peacebuilding initiative of the United Nations Environment Programme (UNEP). The project has also received support from Columbia University’s Center for International Conflict Resolution (CICR), the Centre for Humanitarian Dialogue (HD), and the EU-UN Global Partnership on Land, Natural Resources and Conflict Prevention.

This guide collects and summarizes good practices on the successful mediation of resource conflicts. It consolidates lessons from decades of hands-on experience at both the local and international levels mediating conflicts over extractive resources, land and water. It draws on the field experiences of DPA’s mediators and mediation experts, and also features lessons learned from UNEP’s work on environmental diplomacy.

U.S. Cities Vary Widely in Climate Preparation Due to Politics, Study Says

Via Yale e360 Digest.

Portland, Boston, and Los Angeles are further along than many U.S. cities in planning for extreme weather events linked to global warming, according to a study published in the journal Global Environmental Change. The report found that Tucson, Arizona, and Raleigh, North Carolina, are in the middle-to-early stages of planning, while Tampa, Florida — which is at the highest risk for hurricanes in the U.S. and is located very near sea level — largely dismisses climate change and has done little to plan for it. The study is the first to look at societal factors, such as a city’s political environment, and how those factors affect action on climate change. Interviews with 65 local policymakers in each of the six cities revealed three factors that play a role in how well city planners prepare for climate change: the risk of extreme weather in a given area, public acceptance of climate change, and how aggressively a city’s residents engage in public policy and politics.

The energy and emissions footprint of water supply for Southern California

A J Fang, Joshua P Newell, and Joshua J Cousins (2015). “The energy and emissions footprint of water supply for Southern California.” Environmental Research Letters 10(11), 11 p. Online at Open access.

Abstract: Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

Climate change is driving water cycle speed-up

Read the full story at EnvironmentalResearchWeb.

The global water cycle is getting faster. Over the last few decades rainfall has become heavier whilst evapotranspiration from terrestrial ecosystems has sped up. Now research reveals that climatic changes are the predominant driver of this accelerating hydrological cycle, and that rising carbon dioxide also plays an important role.

Webinar: Laundry Care Products – A Review of Performance, Innovation, and Environmental Leadership

Wed, Dec 2, 2015 2:00 PM – 3:00 PM CST
Register at

Webinar Topics

  • Laundry detergent formulas
  • Environmental and health impacts of laundry care products
  • Performance testing
  • National standards
  • Environmental leadership and product stewardship

Webinar Panelists

Joe McCarthy, Lab Services Manager, Dell Tech Laboratories
Joe oversees Dell Tech’s laboratory operations, Ecologo and Green Seal initiatives, product-testing activities as well as spearheading client projects with Environment Canada regarding New Substance Notifications, Trade Secret Applications, Domestic Substance regulations and Natural Health Products. Joe is a trained ISO 17025 Internal Auditor, sits on the Consumer Specialty Products Association (CSPA) Cleaning Products Executive Board and is a member of many committees including the International Harmonization Committee, Test & Standard Methods Committee Cleaning Products Scientific Committee.

John Paulun, Communications Manager, PortionPac
John joined PortionPac Chemical Corporation in 2011 and is responsible for third-party product certifications, regulatory compliance issues and the implementation of customer education strategies.  Involved in maintaining the fidelity of detergent formulations, he helps to ensure a high standard of quality and performance for PortionPac® detergents throughout the manufacturing process.  In addition, John has successfully shepherded numerous PortionPac® products through the rigorous Green Seal certification process.  He is also certified by the ManageMen OS(1) Executive Management Program for janitorial operations.